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Abstract Reliabilities of scores for experimental tasks are
likely to differ from one study to another to the extent that
the task stimuli change, the number of trials varies, the type of
individuals taking the task changes, the administration condi-
tions are altered, or the focal task variable differs. Given that
reliabilities vary as a function of the design of these tasks and
the characteristics of the individuals taking them, making in-
ferences about the reliability of scores in an ongoing study
based on reliability estimates from prior studies is precarious.
Thus, it would be advantageous to estimate reliability based
on data from the ongoing study. We argue that internal con-
sistency estimates of reliability are underutilized for experi-
mental task data and in many applications could provide this
information using a single administration of a task.We discuss
different methods for computing internal consistency esti-
mates with a generalized coefficient alpha and the conditions
under which these estimates are accurate. We illustrate use of
these coefficients using data for three different tasks.

Keywords Reliability . Coefficient alpha . Split-half
reliability . Generalized coefficient alpha

When conducting research with paper-and-pencil measures,
researchers frequently report reliability coefficients and most
often coefficient alpha, an internal consistency estimate of
reliability (Cortina, 1993; Hogan, Benjamin, & Brezinski,
2000; Peterson, 1994). From our experience, reliability esti-
mates are much less frequently reported for experimental task
measures, those on which individuals respond to relatively
novel stimuli presented across multiple trials. In support of
our hypothesis, we reviewed articles published in Volume 21
and the Issues 1 through 3 of Volume 22 in Psychonomic
Bulletin and Review (PB&R) and Volumes 71 through 83 in
the Journal of Memory and Language (JML). Of the 245
relevant articles in PB&R, 14 of them reported reliability co-
efficients: nine internal consistency reliability coefficients
(alpha and split-half) and six interrater reliabilities. Of the 94
relevant articles in JML, 11 reported reliability coefficients:
five internal consistency reliability coefficients (alpha, split-
half, and split-third), one test–retest reliability, and five
interrater reliabilities. These results are consistent with our
hypothesis that reliabilities are infrequently presented for ex-
perimental task scores.

One possible explanation for these results is that it is un-
necessary to assess the reliability of task scores in experimen-
tal studies. However, this explanation is incorrect. Low reli-
ability negatively impacts effect size, power of hypothesis
tests, and replicability of results across studies, regardless of
the design or method of analysis (e.g., Cleary, Linn, &
Walster, 1970; Humphreys & Drasgow, 1989; LeBel &
Paunonen, 2011). Thus, knowledge of reliability of task scores
can help in understanding results within a study as well as
differences between studies.

Another explanation is that researchers need not compute
reliabilities for tasks within their studies, but rather can rely on
reliability coefficients reported in previous studies. However,
it is difficult to infer, based on reported coefficients in one set
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of studies, how reliable data are in other studies, particularly
for bespoke experimental tasks. Reliability may vary with
changes in the number of trials administered on a task, the
properties of the stimuli, the amount of time allotted to re-
spond to stimuli, and the order of task administration.
Reliability also may vary depending on the age and the ability
of respondents as well as the assessment environment
(Thompson, 2003). Thus, it is very useful to have insight into
the reliability of a task measure as it is administered within
one’s own study.

The focus of our paper is on a third explanation for why
reliability coefficients are infrequently reported for experi-
mental task measures: a perceived lack of methods for com-
puting coefficients that are relatively easy to apply and are
accurate in their assessment of reliability. In terms of ease of
use, internal consistency coefficients require only a single ad-
ministration of a measure and thus can be computed based on
the data collected in one’s study. Nevertheless, it is not always
obvious whether internal consistency coefficients are appro-
priate and how to compute them to yield an accurate assess-
ment of reliability. The purpose of our paper is to address the
use of internal consistency reliability coefficients for experi-
mental task measures.

In the following sections, we define reliability and dis-
cuss a variety of internal consistency coefficients that
could be applied with experimental task measures and their
underlying assumptions. We focus on a particular family of
internal consistency coefficients, those using a general for-
mulation of coefficient alpha. We illustrate issues that arise
in research practice by computing these coefficients on
computer-generated data as well as data collected on sec-
ond graders who were administered tasks designed to as-
sess working memory and word learning. Throughout our
presentation, we argue that internal consistency coeffi-
cients can be viable estimates of reliability for experimen-
tal task measures if they are applied in a judicious fashion.
In our conclusion section, we briefly discuss internal con-
sistency reliability coefficients other than those empha-
sized in this paper.

Definition of reliability

We begin by defining reliability of experimental task scores
within the framework of classical test theory (CTT). For an
individual i, a task observed score, ξi, is the sum of a task true
score, τi, and a task error score, εi; that is,

ξi ¼ τ i þ εi : ð1Þ

It is assumed that τi and εi are uncorrelated, and the mean
of the error scores in the population of participants is zero.
Then, the task observed variance is a sum of the task true

variance and task error variance; that is, σ2
ξ ¼ σ2

τ þ σ2
ε .

Reliability is defined as a ratio of the task true score vari-
ance to the task observed score variance, σ2

τ=σ
2
ξ . As dem-

onstrated in CTT, reliability also can be shown to be equal
to the correlation between scores on a task and a parallel

task ρξξ ′
� �

; that is,

ρξξ′ ¼ σξξ ′=σξ ′σξ ¼ σ2
τ=σ

2
ξ ; ð2Þ

where σξξ ′ is the covariance between the task and the par-

allel task scores, σξ is the standard deviation of the task
scores, and σξ ′ is the standard deviation of the parallel task

scores.

Internal consistency coefficients and coefficient
alpha

In this section, we present various internal consistency coeffi-
cients. Essentially, all the coefficients are special cases of co-
efficient alpha. The distinction among them is based on how
trials on a task are combined together into parts (or splits) of a
task before computing coefficient alpha. In describing appli-
cations of coefficient alpha with experimental task measures,
we substitute the terms trials and tasks for items and tests,
which are the terms traditionally used in describing reliability
with paper-and-pencil tests.

Coefficient alpha as a family of internal consistency
coefficients

For any task, we might contemplate computing coefficient
alpha on trial data. However, potentially a coefficient alpha
can be calculated on scores for any set of components or splits
of a task (Raju, 1977). Thus, there is a family of coefficient
alphas that can be computed for any task. Some coefficient
alphas in this family are likely to be better estimates of reli-
ability than others. In this section, we describe the family of
coefficient alphas. In subsequent sections, we discuss how to
choose among the alphas in the family to obtain the best esti-
mate of reliability.

We begin by presenting the general formulation for coeffi-
cient alpha. Prior to computing any one coefficient in the
family of coefficient alphas, trials are combined together to
createK splits or components of a measure. For simplicity, we
consider only equal-sized splits among the N trials. (For
unequal-size splits, see Raju, 1977, and Warrens, 2014.) In
computing coefficient alpha, scores are computed for each
split as well as for the task. A split score is any statistic that
summarizes the performance across trials for a split, whereas a
task score is the sum of the split scores. Next, we compute the

Psychon Bull Rev (2016) 23:750–763 751



mean of the covariances σsplit;split0
� �

between the K(K−1)/2

pairs of splits and the variance of the task (σ2
Task ). We now can

substitute into the general formula for coefficient alpha, de-
noted αsplit 1=K:

αsplit 1=K ¼ K2 σsplit;split0

σ2
Task

: ð3Þ

αsplit 1=K is an estimate of the reliability of task scores (i.e.,
summed scores across splits) or a linear transformation of
these scores (e.g., mean of split scores). In computing split 1=K

;we have a choice of how to partition the N trials intoK splits.
By far, the most popular method is to split tasks at the trial
level (i.e., K = N). αsplit 1=K now can be reformulated as coef-
ficient alpha for trial data:

αtrial ¼ N2
σtrial;trial

0

σ2
Task

: ð4Þ

σtrial;trial
0 is the mean covariance between all pairs of trial

scores, and σ2
Task is the variance of the summed trial scores.

With αtrial, we are splitting a task into the most number of
components.

Alternatively, we can split a task into two halves (i.e.,K = 2),
the fewest number of components. In this case, we divide trials
on a task into halves, compute scores on the two halves, and
then calculate a reformulated αsplit 1=K:

split half ¼
4 σ

half;hal f
0

σ2
Task

: ð5Þ

σ
half;hal f

0 is the covariance between halves, and σ2
Task is the

variance of the sum of the scores across the two halves.1

It also is possible to compute coefficient alpha for splits
when K is between 2 and N. For example, we could divide
the trials on a task into thirds, compute scores on each third,
and calculate a coefficient alpha for split-third data:

split third ¼
9σthird;third

0

σ2
Task

: ð6Þ

σthird;third
0 is the mean covariance among three pairs of thirds,

and σ2
Task is the variance of the summed scores across the three

thirds.

Assumptions underlying coefficient alpha

The assumptions underlying coefficient alpha are associated
with the observed split scores on a task in the population. For
example, the assumptions involve trial scores for αtrial or
scores on the halves for αsplit half. The assumptions for the split
scores are as follows: (a) An observed score for a split is a sum
of true and error scores. (b) The true scores are within an
additive constant of each other across splits (i.e., the essential
tau equivalence assumption).Within a factor analytic model, a
single factor underlies all splits, the loadings on this factor are
the same for all splits, and the split scores differ by an additive
constant across individuals. (c) The error scores for each split
have a mean of zero, are uncorrelated with the true scores, and
are uncorrelated with error scores of other splits (i.e., the un-
correlated errors assumption).

In the literature, researchers have focused primarily on the
essential tau equivalence assumption and, to a lesser extent, on
the uncorrelated errors assumption (e.g., Cortina, 1993;
Green, 2003; Green & Hershberger, 2000; Miller, 1995;
Osburn, 2000; Raykov, 1997). Coefficient alpha is an under-
estimate of reliability to the extent that splits are not essentially
tau equivalent and an overestimate to the degree that the error
scores are positively correlated across trials. We want to split
task measures so that the effects of violating these assump-
tions are minimized. Thus, the crucial decision is the choice
among the many ways to split a task.

How to split a task to minimize violation
of assumptions

The most popular method for computing reliability is coeffi-
cient alpha for item or trial data, αtrial (Cronbach, 1951;
Cronbach & Shavelson, 2004). A major reason for its popu-
larity is that it is easy to determine. It involves a single admin-
istration of a measure and requires minimal judgment about
splitting a measure; that is, each split consists of a single trial.
Of course, ease of use does not imply that it yields the most
accurate estimate of reliability. As an alternative to αtrial, we
could compute a split-half coefficient (Spearman, 1910) or
some other split-1/K coefficient (e.g., αsplit-third). Researchers
are faced with a difficult judgment in computing αsplit 1=K: the
choice of a particular split of a measure prior to the computa-
tion of coefficient alpha.

How to split a task to minimize violation of the essential
tau equivalence assumption

The choice between αtrial and αsplit half can be framed in terms
of their underlying assumptions. αtrial is an appropriate choice
if all trials are essentially tau equivalent (and errors are

1 A split-half coefficient also may be calculated by computing a correla-
tion between two halves of a measure and then applying the Spearman-
Brown prophesy formula to estimate the reliability of the whole measure.
This approach requires the two halves to be parallel, which is more re-
strictive than the essential tau equivalence assumption for the split half
coefficient using coefficient alpha. Split-half coefficients using the two
approaches yield similar results if the difference between variances for the
two halves is small or moderate (Warrens, 2015).
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uncorrelated). In the population, if trials are essentially tau
equivalent, all αsplit half are the same and equal to a measure’s
reliability; however, split-half estimates will vary across splits
in a sample due to sampling error. Thus, it would be best to
average these split-half coefficients to yield the most stable
estimate of reliability. Cronbach (1951) proved that coeffi-
cient alpha for trials is the mean of all possible split-half
coefficients for a measure. Thus, coefficient alpha for trial
data is preferred if the assumptions underlying alpha are
met at the trial level.

In contrast, the split-half coefficient is likely to be the pre-
ferred estimate of reliability if trials are not essentially tau
equivalent. In this case, αsplit half for a measure will vary from
split to split in the population, although none may exceed the
reliability, assuming errors are uncorrelated. Some split-half
coefficients may yield accurate estimates of reliability if the
halves are essentially tau equivalent, nearly accurate estimates
if the halves are approximately essentially tau equivalent, or
poor estimates if the halves are far from essentially tau equiv-
alent. Thus, the decision about how to split trials into halves is
important because some split-half coefficients are likely to be
better estimates of reliability than others.

Some researchers (Callender & Osburn, 1977, 1979;
Osburn, 2000) have recommended an empirical strategy for
choosing the split that obtains the largest split-half coefficient.
They argued that the maximal αsplit half least underestimates
reliability when the essential tau equivalence assumption is
violated. There are two problems with this recommendation
(Thompson, Green, & Yang, 2010). First, in choosing the
largest αsplit half, we are capitalizing on the chance character-
istics of a sample and thus are likely to report an overestimate
of the true reliability, unless the sample is very large. Second,
we are ignoring that coefficients also can be affected by vio-
lations of the uncorrelated errors assumption. Thus, we prefer
to make the split decision based on our understanding of a
task, which is ideally grounded in past research, and then to
offer, if possible, empirical support for this decision based on
the current sample data.

The initial choice between αtrial and αsplit half as well as the
subsequent choice among different split-half coefficients may
not be important if violation of essential tau equivalence has
minimal effect on the accuracy of these coefficients as esti-
mates of reliability. Based on a number of studies (e.g., Feldt
& Qualls, 1996; Green & Yang, 2009a; Raykov, 1997;
Zinbarg, Revelle, Yovel, & Li, 2005), αtrial can yield poor
estimate of reliability if multiple trials on the general factor
have weak loadings and other trial(s) have stronger loadings,
the task has few trials, and the task is multidimensional.
Overall, it appears that αtrial may be a reasonably accurate
estimate of reliability if the task contains a moderate to large
number of trials (perhaps 20 or more) and the trials have been
selected to be included on the task as a function of their sta-
tistical properties.

For simplicity, we have focused on the way to minimize
violation of the essential tau equivalence assumption for αtrial

and αsplit half. However the approach is the same for any
αsplit 1=K. We combine trials together to create split scores that
are as equivalent as possible.

How to split a task to minimize violation
of the uncorrelated errors assumption

Psychometricians warned about difficulties with meeting the
uncorrelated errors assumption for internal consistency reli-
ability estimates (Cronbach & Shavelson, 2004; Guttman,
1945; Rozeboom, 1966).We suspect there may be fewer ways
to violate this assumption with task measures in comparison
with traditional tests (Green & Hershberger, 2000; Green &
Thompson, 2003), but this is speculation. Errors may be cor-
related if different subsets of trials on a task are associated
with different stimuli. For example, one set of trials may be
associated with one particular visual stimulus and another set
with a different visual stimulus (e.g., Steinberg & Thissen,
1996; Wainer & Kiely, 1987; Yen, 1993). Alternatively, re-
spondents might tend to do better (or worse) on a trial if they
performed well (poorly) on the previous trial, regardless of
their level of skills on the task. In statistical terms, an
autoregressive or moving averages process may underlie the
performance across trials (Green & Hershberger, 2000).
Positive correlations between errors across trials yield an in-
flated coefficient alpha and an overestimate of reliability. The
effect can be quite strong (e.g., Fleishman & Benson, 1987;
Komaroff, 1997; Maxwell, 1968; Miller, 1995; Raykov,
1998), but the actual size of the effect is unclear in practice.

We want to minimize the effects of violations of the uncor-
related errors assumption in splitting a task into components.
For example, if four trials are associated with each of five
stimuli on a 20-trial task, a researcher might combine across
the four trials for each stimulus and compute a split-fifth co-
efficient alpha. With autoregressive or moving averages ef-
fects, trials that are closer to each other in the administration
of a task are likely to have higher correlations than those
farther apart, even if all trials are measuring the same skills.
To minimize this effect, we create splits such that trials asso-
ciated with different splits are as far apart as possible in the
administration of the task (Green & Yang, 2005).

Examples of computing internal consistency
coefficients for tasks

In the following sections, we use examples to illustrate issues
that arise in research practice in computing internal consisten-
cy reliability coefficients on task scores. These examples are
based on data collected on second graders with typical
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development from Arizona, Nebraska, and Massachusetts.
The students completed the Comprehensive Assessment
Battery for Children (Cabbage et al., 2015; Gray et al.,
2015), which included tasks assessing working memory and
word learning. The tasks were completed over 4 days. To
maintain the interest of the students, the tasks were developed
as computer games involving pirates and monsters. We dis-
cuss computation of internal consistency reliability for three
tasks: learning referent, location span running, and classic
Stroop tasks. For the classic Stroop task, we augment the
experimental results by computer generating and analyzing
simulated Stroop data.

Choosing a coefficient for a learning referent task

In this section, we illustrate how to define the scores of interest
for a task (i.e., the focal task scores) and how to split the task
so that the resulting coefficient alpha is a reasonable reliability
estimate of the focal task scores. The measure in our example
is a learning referent task for assessing a child’s ability to learn
the names of four novel sea monsters. For any one child, two
monsters are randomly assigned two-syllable names, and the
other two monsters are randomly assigned four-syllable
names. For any trial, children see all four monsters on a com-
puter screen, hear a name, and touch the monster on the screen
to indicate which monster goes with the presented name.They
receive immediate feedback by being given a virtual coin if
correct or a virtual rock if incorrect. The first block of trials
was considered fast-mapping in that students completed two
trials for each of the four names. In each of the three subse-
quent blocks, children complete 60 trials, with 15 trials for
each name.After completing all blocks, children use their
earned coins to shop at a virtual ice-cream shop.For our study,
160 second-grade students with typical development complet-
ed the task.

Given that children may or may not respond similarly to
learning two-syllable versus four-syllable words, we chose to
compute separate scores for the two types of names.
Accuracies (i.e., proportion of correct trials) were computed
for each name type within a block. These accuracy scores
represent how well they have learned the task for a block
but do not represent the ability of children to learn names.
Thus, the reliabilities of these scores were not of primary
interest, although they may have diagnostic value.

We considered three focal variables to assess speed in
learning for a child: (1) change in accuracies from Block 2
to Block 4; (2) the mean difference in accuracies between
adjacent blocks across Blocks 2, 3, and 4; and (3) the least
squares slope predicting accuracies from block number across
Blocks 2, 3, and 4. For all three variables, accuracies were
computed across the two names within each name type. As
we show next, these three variables are essentially
comparable.

The least squares regression slope is

βi ¼

X4

b¼2

Xb−X
� �

Y ib−Y i

� �

X4

b¼2

X b−X
� �2

; ð7Þ

where Yib is an accuracy scores for respondent i in block b, and
Xb is a block number. Equation 7 simplifies to

βi ¼
2−3ð Þ Y i2−Y i

� �
þ 3−3ð Þ Y i3−Y i

� �
þ 4−3ð Þ Y i4−Y i

� �

2−3ð Þ2 þ 3−3ð Þ2 þ 4−3ð Þ2

¼ Y i4−Y i2

2
¼ Y i3−Y i2ð Þ þ Y i4−Y i3ð Þ

2
:

ð8Þ

Based on Eq. 8, the least squares slope (i.e., focal variable
3) is mathematically equivalent to the mean difference in ac-
curacies between adjacent blocks (i.e., focal variable 2), and
perfectly correlated with the change in accuracy from block 2
to block 4 (i.e., focal variable 1).

We chose to conceptualize the focal task scores as slopes
across Blocks 2, 3, and 4, although these slopes can be
redefined as difference scores between blocks, as just demon-
strated. To be consistent, we will define split scores for com-
puting reliability coefficients as slopes across Blocks 2, 3, and
4. A requirement in splitting a measure is that the focal vari-
able is a sum of the split scores or a linear combination of the
summed scores. In addition, the scores for the splits should be
essentially tau equivalent and their errors independent of each
other. We considered a number of ways to split the task but
narrowed our choice to one of the three possibilities. These
three methods for computing reliabilities of the slopes
across blocks are described below and presented pictorially
in Fig. 1.

Split by trial number This method assessed consistency
across trials to estimate reliability. It was computed as follows:
(1) Accuracies were computed as a mean across the 2 names,
separately for the 2 name types and 15 trials within the 3
blocks. Thus, 90 accuracies were computed for each child
(90 = 2 name types × 15 trials × 3 blocks). (2) A slope was
calculated for accuracies across the 3 blocks, separately by the
2 name types and 15 trials; therefore, 30 slopes were calculat-
ed for each child (30 = 2 name types × 15 trials). (3) Finally,
αsplit-15th was computed for each name type. These reliabilities
were based on the consistency among the 15 slopes defined by
trials for a name type.

Split by name This method assessed consistency across
names to estimate reliability. It was computed as follows: (1)
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Fig. 1 Pictorial representation of three splitting methods for a learning referent
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Accuracy was computed as a mean across the 15 trials, sepa-
rately for the 2 words within each of the 2 word types for the 3
blocks. Thus, 12 accuracies were computed for each child (12
= 2 names × 2 name types × 3 blocks). (2) A slope was
calculated for accuracies across the 3 blocks, separately by
the 2 names within the 2 name types; therefore, 4 slopes were
calculated for each child (4 = 2 names × 2 name types). (3)
Finally, αsplit-half was computed for each name type. These
reliabilities were based the consistency between the 2 slopes
defined by the 2 names for a name type.

Split for equivalenceThismethod assessed consistency across
halves created to be as similar as possible in terms of names and
trial sequence. It was computed as follows: (1) Accuracy was
computed as a mean across the 15 trials, balancing the effects of
trial sequence and word; accuracy was calculated separately for
the 2 equated halves within each of the 2 word types for the 3
blocks, producing 12 accuracies for a child (12 = 2 equated
halves × 3 blocks × 2 name types). The accuracy for one equat-
ed half was computed as a mean across the 8 odd-numbered
trials for the first name and the 7 even-numbered trials for the
second name within a name type. The accuracy for the other
equated half was computed as a mean across the 8 odd-
numbered trials for the second name and the 7 even-
numbered trials for the first name for a name type. (2) A slope
was calculated for accuracies across the 3 blocks, separately for
the 2 equated halves within the 2 name types; therefore, 4
slopes were calculated for a child (4 = 2 equated halves × 2
name types). (3) Finally, αsplit-half was computed for each name
type. These reliabilities were based the consistency between the
2 slopes defined by equated halves for a name type.

We weighed the positives and the negatives associated with
the three splitting methods in assessing the reliabilities of the
slopes. As required for computing a coefficient alpha, the sums
of the slopes for the splits for all three splitting methods are
linearly related to the focal task scores, the slopes based on the
accuracies across the three blocks. It is straightforward to prove
this conclusion in that the slopes can be redefined in terms of
difference scores. In other applications, it may be difficult to
demonstrate mathematically that the sum of the split scores is
linearly related to the focal task scores. An alternative to a
derivation is to compute the correlation between the sum of
the split scores and the focal task scores. If the resulting corre-
lation is 1.0, the required condition has been met for the ana-
lyzed data, although not necessarily in general. It should be
noted that the correlation would have been less than 1.0 for
the third method if one half had included the odd numbered
trials and the other half had included the even numbered trials
because the number of odd and even numbered trials differed.

We next consider the violation of the essential tau equiva-
lence assumption. In constructing the task, names were select-
ed within the two-syllable pair and within the four-syllable
pair so that they would be as equivalent as possible.

Nevertheless, any two names have different structures and
associations and are likely to be learned with differential dif-
ficulty across children. This lack of equivalence of the names
within the two-syllable and the four-syllable pairs is likely to
produce underestimates of reliability using the second split-
ting method. Another characteristic about the task that could
affect equivalence of the splits for the second method is trial
number. Although the accuracies are likely to differ across
trials, it is less apparent whether the relative speeds in learning
are likely to differ across the 15 trials. In the last method we
created splits that were relatively balanced within split with
respect to name and trial number. Accordingly, we believed a
priori that this method would yield the most equivalent split.

We last consider the violation of the uncorrelated error as-
sumption. We would argue that the first and third splitting
methods are most vulnerable with regard to this assumption in
that the splits are a function of trial number, and thus there is the
potential for a sequential effect. However, we do not think the
concern is a major one because the occurrence of adjacent num-
bered trials does not imply adjacent trials in the task. In addition,
any sequential effect should be minimized, given the scores
computed for splits are slopes across blocks. Overall, we chose
the three split methods because they were judged to produce
relatively appropriate splits. However, of the three methods,
we preferred the third approach because splits based on it were
more likely to meet the essential tau equivalence assumption.

As shown in Table 1, the reliabilities varied by splitting
methods. As expected, the reliability estimates were highest,

Table 1 Internal Consistency Reliabilities for the Learning Referent
Task

Variable Splitting Method

Split by trial number Split by name Split for equivalence

Two-syllable names

Block 2 .88 .81 .91

Block 3 .92 .91 .93

Block 4 .93 .93 .95

Slopes .73 .72 .80

Four-syllable names

Block 2 .90 .86 .93

Block 3 .92 .87 .93

Block 4 .92 .84 .90

Slopes .81 .70 .84

Note. Coefficient alphas were computed not only for the slopes but also
for the accuracies of the blocks. To calculate these alphas for blocks, we
followed the same first step as described in computing alphas for slopes.
Then, we calculated (1) alphas based on the consistency between accura-
cies of the 15 trials created by splitting the task by trial number, (2) alphas
based on the consistency between accuracies of the halves created by
splitting the task by name within name type, and (3) alphas based on
the consistency between accuracies of the halves created to maximize
equivalence
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with one exception, for the split method for equivalence. We
would argue that because this method came closest to meeting
the essential tau equivalence assumption, it yielded the most
accurate reliability estimates. On the other hand, the reliability
estimates based on halves that differed by names tended to
produce the lowest reliability. Although the names were cho-
sen to minimize differences in responses, any two names are
likely to yield different results, and therefore our findings were
not surprising.

The focal task scores of slopes were reliable, although not
highly reliable. This result was not unexpected in that the
slope scores are essentially difference scores (see Eq. 8), and
difference scores are more unreliable in many applications
than the scores that go into them (Rogosa & Willett, 1983).
Consistent with this literature and as shown in Table 1, the
block scores evidenced greater reliability than the slopes.

Choosing a coefficient for a location span running task

We next present a brief example using a location span running
task. The reason for presenting this task is to illustrate that splits
that are not routinely used in practice, such as split thirds or split
quarters, maymake better sense for some tasks. For the location
span running task, the game was to help direct a pirate to buried
treasure by remembering where a series of arrows pointed in
sequence from the last to the first location. At the beginning of
each trial, a black dot appeared at the center of the screen,
followed by sequentially presented arrows (5, 6, 7, or 8 arrows).
The arrows radiated out from the black dot and pointed at
discrete locations at one of eight equidistant angles in a clock-
like pattern. The number of arrows that appeared in a trial was
randomly determined so that children could not anticipate span
length. After a sequence of arrows was presented, eight red dots
appeared in a circular pattern around the screen to show the
possible locations where arrows could have pointed. The chil-
dren were asked to touch the red dots indicating the locations
where arrows had pointed, sequentially from the last to the first
location. The task included three trials for each of the four span
lengths. The dependent variable was the mean number of loca-
tions correctly identified across all trials. One-hundred and
fifty-four children completed this task for the analyses.

To maximize the chances of meeting the essential tau
equivalence assumption, we split the task into thirds, with

scores for any third being the mean number of locations cor-
rectly identified across four trials of different span lengths.
This approach is a master plan for splitting the task rather than
yielding a unique split. We considered three unique splits
within this master plan, as presented in Table 2. For the first
splitting method, the 1st, 2nd, and 3rd thirds consisted of the
first trials for the four span lengths, the second trials for the
four span lengths, and the third trials for the four span lengths,
respectively. We were interested in this splitting method be-
cause the thirds based on this method should be the least
equivalent among methods within the master plan. More spe-
cifically, the thirds within this splitting method differ dramat-
ically in terms of when theywere presented in the task: earliest
for the 1st third, next earliest for the 2nd third, and latest for
the 3rd third. In contrast, the second splitting method in the
table should yield thirds with greater equivalence, and the
third splitting method even greater equivalence.

As hypothesized and as shown in Table 2, the coefficient
alphas differed as a function of the degree of equivalence of
thirds across the splitting methods. We would argue that .94
represents the best estimate of reliability for the focal variable,
not simply because it is the highest value among the three
coefficients but because the splits for this coefficient best meet
the assumptions underlying alpha.

Choosing a coefficient for the stroop test

In our final example, we discuss the choice of internal consis-
tency reliability coefficients for the Stroop color-word task (or,
more simply, the Stroop test), which was designed to assess
inhibition. We present this example because the scoring of the
Stroop test can produce data that could be inconsistent with
the essential tau equivalence assumption. Results are present-
ed for computer-simulated Stroop data as well as data from
our experimental study.

With the Stroop test, one of four words describing colors
(e.g., Bred,^ Bblue,^ Byellow,^ or Bgreen^) appears on a com-
puter screen. These words are displayed in one of four colors
(e.g., red, blue, yellow, or green). Individuals are instructed to
name the displayed color of the word on the screen as quickly
as possible. The task includes both congruent and incongruent
trials, with the order of presentation randomly or semirandomly
determined. The presented word and its displayed color are the

Table 2 Trial Numbers for the Four Span Lengths Involved in the Creation of Split Thirds for Three SplittingMethods and Their Resulting Split-Third
Coefficients

Splitting method Spans of 1st third Spans of 2nd third Spans of 3rd third αsplit-third

5 6 7 8 5 6 7 8 5 6 7 8

Method 1 1 1 1 1 2 2 2 2 3 3 3 3 .86

Method 2 1 1 3 3 2 2 2 2 3 3 1 1 .92

Method 3 2 2 1 3 3 1 2 2 1 3 3 1 .94
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same for congruent trials and different for incongruent trials.
Multiple dependent variables can be computed for the Stroop
test: proportion of trials answered correctly (accuracies), the
mean response times for the trials answered correctly (RTs),
and an index to assess inhibition (e.g., difference in mean RTs
between conditions).

In splitting the Stroop test to compute a coefficient alpha, the
mean RTs for the various splits can be based on different num-
bers of trials, depending on how many trials are answered cor-
rectly by respondents. In addition, the number of trials an-
swered correctly in the various splits is likely to vary across
respondents. This process is not built into the CTT model un-
derlying coefficient alpha. Because the essential tau equiva-
lence assumption is violated, coefficient alpha may underesti-
mate the true reliability. We analyzed computer generated data
to assess the bias of coefficient alpha in estimating the true
reliability for Stroop-like data. We also considered whether
violation of the uncorrelated errors assumption has an effect
on the bias due to variability in the number of trial across splits.

Analysis of simulated stroop RT data In Appendix A, we
describe the methods used to generate RT data and to calculate
reliabilities on these data. For simplicity, we generated data for
a 16-trial task representing a single condition (e.g., incongru-
ent trials). In the simulation, we varied the percentage of trials
answered correctly: 100 % or 80 %. The choice of trials to be
answered incorrectly was randomly determined.We also varied
whether the uncorrelated errors assumption was violated or not.
If the assumption was violated, the strongest correlation was for
errors between adjacent trials. We computed coefficient alphas
based on seven different splits of the task: αtrial for trial-level
data, αsplit half for four different splits halves of the task, and
αsplit quarter for three different split quarters of the task. The splits
for αsplit half and αsplit quarter are shown in Table 3.

Population-level analysis Initially, we evaluated coefficient
alphas at the population level. We approximated these popu-
lation coefficients by generating data for 5,000,000 simulees.

Because the data were computer generated, we could com-
pute the true reliability. The population results are presented in
Table 4. In the first column of this table are the results when all
trials were answered correctly and the uncorrelated errors as-
sumption was met. The true reliability based on the simulated
data (.716) was identical to the true reliability based on the
mathematical model underlying the data, as presented in
Appendix A. This result acts as a validity check for the simu-
lation computer program. As expected given, the method used
to generate the data, the population alphas, regardless of how
the task was split, were accurate estimates of the true reliability.

When only 80 % of the trials were answered correctly with
no violation of the uncorrelated errors assumption (in the third
column of Table 4), the true reliability was lower (.665) be-
cause the observed task scores (mean RT for trials answered
correctly) were based on fewer number of trials. The split-
quarter coefficient alphas marginally underestimated the true
reliability, whereas the split-half coefficient alphas were
slightly better. At first glance, the results for αtrial for these
conditions appear surprising in that violation of the essential
tau equivalence assumption should yield lower-bound esti-
mates. However, the inaccuracy of αtrial was due to Bmissing
data^ in the calculation of alpha. All trials had to be answered
correctly for the data for a simulee to be included in the cal-
culation of αtrial. The result was that the alpha was based on
only 3% of the 5,000,000 simulees. It is not surprising that the
αtrial for this subset of simulees was identical to the alpha for
the condition with 100 % accuracy because both were com-
puted for data that were generated comparably.

When the uncorrelated error assumption was violated and
all trials were answered correctly, the coefficient alphas, re-
gardless of how the task was split, were overestimates of the
true reliability. The overestimation was minimal for some
splits and dramatic for other splits. The overestimation was
greater to the extent that adjacent trials were in different splits.
When only 80 % of the trials were answered correctly, the
effect of violation of the uncorrelated errors assumption was
minimized for split-half and split-quarter alphas. Essentially,
the correlation between errors for different trials decreased

Table 3 Trials for Different Splits for αsplit half and αsplit quarter

Split name 1st split 2th split 3rd split 4th split

Split halves

By 1 s 1,3,5,7,9,11,13,15 2,4,6,8,10,12,14,16

By 2 s 1,2,5,6,9,10,13,14 3,4,7,8,11,12,15,16

By 4 s 1,2,3,4,9,10,11,12 5,6,7,8,13,14,15,16

By 8 s 1,2,3,4,5,6,7,8 9,10,11,12,13,14,15,16

Split quarters

By 1 s 1,5,9,13 2,6,10,14 3,7,11,15 4,8,12,16

By 2 s 1,2,9,10 3,4,11,12 5,6,13,14 7,8,15,16

By 4 s 1,2,3,4 5,6,7,8 9,10,11,12 13,14,15,16
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when 20 % of the trial scores were excluded from the compu-
tation of the coefficient alphas. As before with 80 % accuracy,
the αtrial was problematic because it was based on data for
only a very small percentage of the examinees (1 %).

Sample-level analysisWe also generated 1,000 samples with
100 simulees to evaluate coefficient alpha values for sample

data. The means of the coefficient alphas across the 1,000
samples are presented in Table 5. Overall, the results for the
mean sample values were similar to those at the population
level. Regardless of condition, the sample coefficient alphas
were slightly negatively biased estimates of their population
counterparts. Although not shown in the table, the instability
of the sample estimates (evaluated by the standard deviation

Table 4 Population Values of αtrial, αsplit half, and αsplit quarter for Different Splits (Percent of Simulees Used in Computation of Coefficients in
Parentheses, if less than 100 %)

Coefficient 100 % Accuracy 80 % Accuracy

Uncorrelated errors Correlated errors Uncorrelated errors Correlated errors

True reliability

ρξξ ′ .716 .633 .665 .623

Split into items for αitem

αtrial .716 .757 .716 (3 %) .738 (1 %)

Split halves for αsplit half

αsplit half by 1s .716 .828 .660 (≈ 100 %) .616 (≈ 100 %)

αsplit half by 2s .716 .760 .660 (≈ 100 %) .615 (≈ 100 %)

αsplit half by 4s .716 .692 .660 (≈ 100 %) .615 (≈ 100 %)

αsplit half by 8s .716 .653 .660 (≈ 100 %) .616 (≈ 100 %)

Split quarters for αsplit quarter

αsplit quarter by 1s .716 .787 .648 (99 %) .601(98 %)

αsplit quarter by 2s .716 .721 .649 (99 %) .601(98 %)

αsplit quarter by 4s .716 .672 .648 (99 %) .600 (98 %)

Note. If a simulee responded incorrectly for a trial, the simulated RT was essentially treated as missing data. Data for a simulee were included in the
computation of alpha only if scores were available for all splits. The implication was most dramatic with αtrial for the 80 % accuracy condition; only 1 %
to 3 % of the simulees were included in the analysis to compute these coefficients (as shown in parentheses in the table)

Table 5 Mean αtrial, αsplit half, and αsplit quarter for Different Splits

Coefficient 100 % Accuracy 80 % Accuracy

Uncorrelated errors Correlated errors Uncorrelated errors Correlated errors

True reliability

ρξξ ′ .716 .633 .665 .623

Split into items for αitem

αtrial .709 .751 Insufficient Data Insufficient Data

Split halves for αsplit half

αsplit half by 1s .709 .824 .651 .605

αsplit half by 2s .707 .752 .649 .602

αsplit half by 4s .710 .685 .655 .606

αsplit half by 8s .710 .645 .652 .607

Split quarters for αsplit quarter

αsplit quarter by 1s .708 .802 .639 .588

αsplit quarter by 2s .710 .714 .640 .589

αsplit quarter by 4s .710 .665 .642 .592

Note. If a simulee responded incorrectly for a trial, the simulated RT was essentially treated as missing data. Data for a simulee were included in the
computation of alpha if scores were available for all splits. For the two 80 % accuracy conditions, the number of simulees with complete item data was
judged insufficient for computing αtrial (eight or fewer for the 1,000 samples). In comparison, the number of simulees with complete data was much
greater for computing αsplit half (99 or 100 for the 1,000 samples) and αsplit quarter (96 to 100 for the 1,000 samples)
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of the sample coefficients) was greater if splits contained more
trials.

It is important to note that we do not present results forαtrial

for the 80 % accuracy conditions because these alphas were
based on datasets with very few simulees (eight or fewer
simulees in any one sample). Although not presented, the
alphas based on these extremely small samples were wildly
inaccurate. These results indicate why trial-level coefficient
alphas are not computed for Stroop data in practice.

Overall the simulation data indicated that if the Stroop
test is split appropriately, coefficient alpha can yield accu-
rate estimates of reliability. We should add that we gener-
ated simulated data using alternative parameter values for
the underlying model and had similar conclusions based on
their results. However, further work is necessary to evalu-
ate the accuracy of coefficient alphas for alternative under-
lying models.

Experimental data For the experimental data, children were
presented 12 congruent trials and 12 incongruent trials, with
the order of presentation randomly determined for each child.
We computed mean RTs for trials answered correctly for con-
gruent and incongruent conditions as well as the differences
between these mean RTs. Mean RTs were considered valid
only if 6 of the 12 trials were answered correctly for each
condition. The sample size was reduced from 161 to 156 as
a function of this restriction.

A variety of internal consistency coefficients for Stroop
RT data are presented in Table 6. A child’s data were used
to compute a coefficient alpha using a splitting method for
a condition only if at least half of the trials were answered
correctly for all splits: at least 3 correct trials for each half
in computing an αsplit half, at least two trials for each third

in computing an αsplit third, and all correct trials to com-
pute αtrial.

As we see in the first row of Table 6, the reliability coeffi-
cients based on trial-level data are problematic. As previously
discussed with the simulated data, a child’s data were not
included in the computation ofαtrial unless that child answered
all trials correctly. For example, for the incongruent condition,
αtrial was computed based on the RTs for only 81 of the 156
children. αtrial based on a reduced sample size is likely to be a
biased estimate of the true reliability and cannot be trusted.
The other coefficient alphas reported in Table 6 were based on
sample sizes that were close to the total analysis sample size of
156 and thus should have been minimally susceptible to the
sample bias problem of αtrial. However, a similar problem
could arise with other alphas if research participants would
make more errors than those in our sample.

It is interesting to note that different splitting methods had
only a minor effect on the values of coefficient alpha for the
incongruent and congruent conditions. The alphas were most-
ly in the low .70s for the incongruent condition, whereas the
alphas were in the high .50s and low .60s for the congruent
condition. Alphas also were computed based on the differ-
ences in RTs between conditions (last column of Table 6).
These difference scores, rather than the RTs for the incongru-
ent and congruent conditions, are frequently used to infer in-
hibition effects. The alphas for these difference scores were
variable but generally indicated poor reliability. Ostensibly,
we would conclude that the difference scores demonstrated
unsatisfactory reliability in our sample, and a greater number
of trials should be considered in future research with similar
sampled children. This conclusion is bolstered by previous
research that concluded that differences between incongruent
and congruent RTs on the Stroop test are unreliable based on
test–retest coefficients, although the RTs for the incongruent

Table 6 Internal Consistency Reliabilities of RTs (Ns in parentheses) for the Classic Stroop Task

Coefficient Splita Incongruent Congruent Difference

αtrial 1/2/3/4/5/6/7/8/9/10/11/12 .76 (81) .61 (132) .21 (68)

αsplit half 1,3,5,7,9,11 / 2,4,6,8,10,12 .73 (155) .61 (156) .40 (155)

αsplit half 1,2,5,6,9,10 / 3,4,7,8,11,12 .73 (156) .59 (156) .38 (156)

αsplit half 1,2,3,7,8,9 / 4,5,6,10,11,12 .75 (156) .56 (156) .34 (156)

αsplit half 1,2,3,4,5,6 / 7,8,9,10,11,12 .67 (155) .54 (156) .14 (155)

αsplit third 1,4,7,10 / 2,5,8,11 / 3,6,9,12 .71 (153) .63 (156) .36 (153)

αsplit third 1,2,7,8 / 3,4,9,10 / 5,6,11,12 .74 (154) .57 (156) .33 (154)

αsplit third 1,2,3,4 / 5,6,7,8 / 9,10,11,12 .70 (155) .57 (156) .23 (155)

Note. Reliabilities were based on a sample of 156 children. For the congruent condition, 146 children responded correctly to 100 % of the trials, and 10
children responded correctly to at least 83% but less than 100% of the trials. For the incongruent conditions, 83 children responded correctly to 100% of
the trials; 64 children responded correctly to at least 83% but less than 100% of the trials; and 9 children responded correctly to at least 58% but less than
83 % of the trials
a Commas are used to separate trials within a split, and slashes are used to separate splits
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and congruent RTs are reliable (e.g., Jensen, 1965; Siegrist,
1997; Strauss, Allen, Jorgensen, & Cramer, 2005).

Conclusion

Unfortunately it is risky to rely on past studies that reported
reliability estimates given that reliability is a function of the
characteristics of the task, the conditions under which it is
administered, and the type of respondents. Thus, it would be
advantageous to estimate reliability based on the same data
used to reach substantive conclusions. Internal consistency
estimates of reliability for task measures are ideal for this
purpose because they can provide this information using a
single administration of a task. Of course, they are only ideal
if they yield relatively accurate estimates of reliability.

We have discussed different methods for computing inter-
nal consistency estimates with a generalized coefficient alpha
and the conditions under which these estimates are accurate.
We have argued that experimenters should carefully consider
different methods to split their task and choose the split that
should yield the most accurate estimate of reliability. They
also may consider computing multiple coefficient alphas
based on different splits of a task to assess whether the calcu-
lated values of these coefficients are consistent with their un-
derstanding of the measure. We demonstrated through the
examples the thought process underlying the choice of coef-
ficient alpha and the confidence gained in choosing a reliabil-
ity estimate if the results are consistent with one’s predictions.
If the coefficient alphas yield low values, as with the Stroop
difference scores, the experimenter should be skeptical about
the reliability of the task measure.

As with any data collection and analysis method, we need
to be judicious in the way that we collect and analyze data in
the computation of coefficient alpha. However, with method-
ological care, coefficient alpha should provide helpful infor-
mation in understanding the reliability of experimental task
scores. Most importantly, as currently practiced, we have set
a low bar for coefficient alpha: Is it better than guessing the
reliability based on previous studies? On the basis of our anal-
yses, we would suggest that this bar has been met.

We presented coefficient alpha as a general method for
computing reliability, regardless of the choice of splits. The
advantage of this method is that it allows for a unified ap-
proach for computing coefficients, regardless of the number
of splits and with a minimal amount of statistical estimation
complexities. However, it is important to recognize that coef-
ficients other than alpha are available. For example, the
Angoff-Feldt coefficient for two components and the Feldt-
Gilmer coefficient for three or more components (Feldt &
Charter, 2003) do not require essentially tau equivalent com-
ponents but rather the less restrictive assumption of congener-
ic components (i.e., allowing for differences among loadings

on a single underlying factor). Alternatively, reliability coef-
ficients can be computed based on results of factor analytic
models, which can be unidimensional or multidimensional
(McDonald, 1999; Zinbarg, Yovel, Revelle, & McDonald,
2006). In addition, the coefficients based on factor analytic
models can take into account component scores that are ordi-
nal (Green & Yang, 2009b).

We would like to see further discussion of reliability coef-
ficients for task scores. In particular, there is little data to
evaluate the sensitivity of reliability coefficients to changes
in task characteristics, respondents, and administration condi-
tions. Vacha-Haase, Henson, and Caruso (2002) discuss a
methodology for evaluating sensitivity of reliability coeffi-
cients, which they refer to as reliability generalization. Also,
a typology of task measures could be suggested that would
link the kind of internal consistency reliability coefficients to
the type of task. Potentially, we would learn most about the
applicability of internal consistency reliability coefficients for
task measures by applying them in experimental and field
research.
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Appendix A. Describing simulation and analysis
of RTs for stroop task

In this appendix, we describe the methods used to generate
simulated RT data and to calculate coefficient alphas and true
reliability for these data.

Generation method

Within CTT, the observed score is equal to the true score plus
an error score for an individual i on trial t: ξit = τi+εit. We
generated the true and error scores and then summed them to
obtain observed scores, the simulated RTs. To generate a true
score on a trial for an individual, we generated scores that
were exponentially distributed with a parameter, λ; the mean
and variance of this distribution were 1/λ and 1/λ2, respective-
ly. We simulated variability in true scores across individuals
by generating normally distributed scores, μi, with a mean of
μ and a variance of σ2

μi
. Note that μi is constant across trials

for an individual so that the scores on trials are tau equivalent.
Errors were generated to be normally distributed with a mean
of 0 and a variance of σ2

ε =σ2+1/λ2. To create observed

Psychon Bull Rev (2016) 23:750–763 761



scores, we summed the true and error scores. These observed
scores were ex-Gaussian distributed across items for an indi-
vidual. The observed scores can alternatively be defined as a
sum of two independent random variables, one of which is
distributed exponentially and the other normally. The expo-
nentially distributed variable has a single parameter, λ, and the
normally distributed variable has a mean of μi and a variance
of σ2. The mean and variance of trial simulated RTs for an

individual are μξit ¼ μi þ 1=λ and σ2
ξit

¼ σ2 þ 1=λ2, respec-

tively. The distribution of observed scores has a skew of
(2/σX

3/2λ3)(1+2/σX
2λ2)‐3/2.

Based on the generation model, the reliability of simulated
RTs for a trial is

ρξξ′ ¼
σ2
τ

σ2
τ þ σ2

ε
¼ σ2

μi

σ2
μi

þ σ2 þ 1=λ2
� � ; ðA:1Þ

and the reliability for experimental task scores if all trials are
answered correctly is

ρξξ′ ¼
Nσ2

μi

Nσ2
μi

þ σ2 þ 1=λ2
� � : ðA:2Þ

It is also straightforward to prove that the reliability for an
experimental task is equal to coefficient alpha for our genera-
tion model:

ρξξ′ ¼
Nσ2

τ

N σ2
τ þ σ2 þ 1=λ2

� � ¼ N2
�σtrial;trial′

σ2
Task

: ðA:3Þ

Because the trial data are tau equivalent, coefficient alpha is
equal to the population reliability for all other equal splits of
trials.

It is more difficult to assess the accuracy of coefficient
alpha if all trials are not answered correctly or if the errors
are correlated. For our simulation, we used a random uniform
number generator to define the probability of answering the
trial correctly. We also simulated correlated errors by creating
an autoregressive error structure. More specifically, for an
individual, the error at trial t is a function of the error at time
t – 1 with an autoregressive coefficient of β plus an indepen-
dent error at time t times a coefficient to maintain stationarity;
that is,

εit ¼ β εi t�1ð Þ þ 1�β2
� �1=2

ε′it: ðA:4Þ

Data for our simulation

For our simulations, we generated data for a 16-trial task using
the following parameters: μ = 600, σμi

2 = 6400, λ = .005, and
σ2 = 625. These values are similar to those considered by
Ratcliff (1993), although he did not consider reliability of

simulated RTs and thus did not decompose his observed
scores into true and error scores. Based on these parameters
and all trials being answered correctly, the population reliabil-
ity for a trial is

ρξξ0 ¼
Nσ2

μi

Nσ2
μi

þ σ2 þ 1=λ2
� � ¼ 6400

6400þ 625þ 1= :005ð Þ2
h i

¼ :136;

and the population reliability for the task is

ρξξ0 ¼
Nσ2

T

Nσ2
T þ σ2 þ 1=λ2

� � ¼ Nσ2
T

Nσ2
T þ σ2 þ 1=λ2

� �

¼ 0:716:

In the simulation, we varied the percent of trials answered
correctly: 100 % and 80 %. We also varied the autoregressive
coefficient with β being set at 0 or .2 to assess the effects of
violating the uncorrelated errors assumption.

We examined reliability both at the population level and
sample level. We generated data for 5,000,000 simulees to
approximate reliability values at the population level, whereas
we generated 1,000 samples with 100 simulees to evaluate
reliability values at the sample level.

Assessing reliabilities

Because we generated the data, we were able to compute a
very accurate approximation of the true reliability. At the pop-
ulation level, we generated retest scores for the 18 trials of the
task by maintaining the same true scores for the test and retest
but creating different error scores. The true reliability then was
determined by computing a correlation between the test and
the retest for the 5,000,000 simulees.

We assessed the accuracy of coefficient alphas based on
seven different splits of the task: an αtrial for trial-level data,
αsplit half for four different half-splits of the task, and αsplit

quarter for three different quarter-splits of the task. The splits
forαsplit half andαsplit quarter are shown in Table 3 in the body of
the paper. These coefficient alphas were computed both at the
population and sample levels and compared to the true reli-
ability to assess their accuracy.
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