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This paper attempts to evaluate the capacity of immediate memory to cope with new situations in rela-
tion to the compressibility of information likely to allow the formation of chunks. We constructed a task
in which untrained participants had to immediately recall sequences of stimuli with possible associations
between them. Compressibility of information was used to measure the chunkability of each sequence on
a single trial. Compressibility refers to the recoding of information in a more compact representation.
Although compressibility has almost exclusively been used to study long-term memory, our theory sug-
gests that a compression process relying on redundancies within the structure of the list materials can
occur very rapidly in immediate memory. The results indicated a span of about three items when the list
had no structure, but increased linearly as structure was added. The amount of information retained in
immediate memory was maximal for the most compressible sequences, particularly when information
was ordered in a way that facilitated the compression process. We discuss the role of immediate memory
in the rapid formation of chunks made up of new associations that did not already exist in long-term
memory, and we conclude that immediate memory is the starting place for the reorganization of
information.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Individuals have a tendency to make information easier to
retain by recoding it into chunks (e.g., Cowan et al., 2004). The pro-
cess of chunking simplifies memorization by taking advantage of
knowledge to reduce the quantity of information to be retained
(Miller, 1956). As a key learning mechanism, chunking (or group-
ing) has had considerable impact on the study of expertise (e.g.,
Chase and Simon, 1973; Ericsson et al., 1980; Hu and Ericsson,
2012), immediate recall (e.g., Chen and Cowan, 2005; Farrell
et al., 2011), and memory development (e.g., Cowan et al., 2010;
Gilchrist et al., 2009).

For chunking to benefit memory, people need to be able to
retrieve the chunks they stored. One way people retrieve chunks
is via long-term memory processes (French et al., 2011; Gobet
et al., 2001; Guida et al., 2012; Reder et al., in press). Consider
the letter string IBMCIAFBI. As Miller discussed, this letter string
can be easily simplified to form three chunks if one uses
long-term memory to recall the U.S. agencies (Miller, 1956) whose
acronyms are IBM, CIA, and FBI.

Previous work on chunking has focused on how long-term
memory aids chunk creation. However, immediate memory might
also play a fundamental role in the creation of chunks. People may
form chunks in immediate memory by rapidly encoding patterns
before any consolidation in long-term memory occurs. For exam-
ple, it is easy to remember the letter string AQAQAQ using a simple
rule of repetition (e.g., AQ three times). This type of simplification
does not necessarily depend on the use of long-term memory to
recall past knowledge that relates items to each other.1 Instead, this
process depends on the apprehension of regularities inherent to the
stimulus at hand, i.e., compression.

This idea that immediate memory might play a fundamental
role in the creation of chunks has generally been overlooked. Some
previous findings are consistent with the proposal that chunks can
increase memory capacity (Brady et al., 2009; Feigenson and
Halberda, 2008). However, these studies have mostly focused on
how long-term-memory representations contribute to encoding
, and 3),
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in immediate memory. In contrast, our goal is to provide a princi-
pled quantitative approach to how immediate memory relates to
the formation of chunks. Getting a larger picture of chunking as a
process originating in immediate memory needs a precise
conceptualization, and the concept of compressibility could help
in doing so.

We propose a two-factor theory of the formation of chunks in
immediate memory. The first factor is compressibility (i.e., the idea
that a more compact representation can be used to recode infor-
mation in a lossless fashion2). Compressibility could predict chunk-
ing because it measures the degree to which the material is
patterned, and hence the degree to which the material can be simpli-
fied. Memory for compressible sequences should be superior to
memory for non-compressible sequences (the same way that studies
in the domain of categorization have shown that compressible mate-
rial is better learned over the long term; see Feldman (2000)).

The second factor is the order of the information to memorize.
Presentation order might influence the ease with which patterns
or regularities in the stimuli can be discovered, and compression
algorithms typically depend on this kind of information. A presen-
tation order that aligns with the process of simplifying the material
may increase the likelihood that chunking occurs. In contrast, pre-
sentation orders that do not aid in the discovery of regularities,
might result in failure to chunk compressible materials, causing
them to be remembered in a way similar to non-compressible
materials. Presentation order should therefore interact with com-
pressibility. As a simple example, one can compress the set ‘‘2, 3,
4, 5, 6” with the rule, ‘‘all numbers between 2 and 6”, whereas with
the series ‘‘2, 4, 6, 3, 5”, that same rule might not be noticed by the
participant, so compression might not take place.

This two-factor theory is adapted from the domain of catego-
rization, which has provided a framework for studying category
formation in long-term memory, with explanations based on the
compressibility of descriptions (Bradmetz and Mathy, 2008;
Feldman, 2000, 2003; Goodwin and Johnson-Laird, 2013; Lafond
et al., 2007; Vigo, 2006) using different types of presentation
orders (based on rules, similarity, or dissimilarity; see Elio and
Anderson (1981, 1984), Gagné (1950), Mathy and Feldman
(2009) and Medin and Bettger (1994)). This framework nicely
accounts for a wide range of categorization performance in long-
term memory, but could in principle provide similar predictions
for immediate memory. Our theory is that a compression model
(e.g., Feldman, 2000) can be adapted to immediate memory. The
rationale is that elementary structures, i.e., the redundancies that
make a structure compressible, are simple enough to be used
rapidly in immediate memory to cope with new situations.

We conducted an experiment to test the proposal outlined
above, namely, that chunk formation occurs in immediate memory
to optimize capacity before any consolidation process in long-term
memory occurs. Our prediction is that immediate-memory span is
proportional to stimulus compressibility, but only when the order
of the information allows the participant to spontaneously detect
redundancies such as pairs of similar features.

In the Discussion, we provide ample evidence that there are two
major classes of concurrent models that cannot provide correct
predictions for our results. The first class is Interference-based
models of short-term memory, which predict poorer performance
when participants see sequences containing similar features,
whereas our model predicts that participants can take advantage
of these similarities to compress information. The second class
2 By this, we mean a compression process without loss of information (the origina
data can be accurately reconstructed from the compressed data), and not a ‘‘lossy”
form of compression (which brings to mind many of the applications in information
technology used today to achieve a more substantial reduction of data); see Li and
Vitányi (1997).
l

includes the minimal description length (MDL) approaches to long-
term memory, which rely on the repetition of trials, and as such,
offer no predictions about the compression process at play in our
task.
2. Method

Two key aspects were investigated in the present experiment:
compressibility of a sequence and presentation order within a
sequence. These two factors were studied using categorizable
multi-dimensional objects, with discrete features, such as small
green spiral, large green spiral, small red square. The sequences
used could not conform to already-learned chunks. Although the
features themselves are part of basic knowledge, we are reasonably
confident, for instance, that none of our participants had the exact
sequence of items ‘‘a small green spiral followed by a large purple
pentagon and a small yellow pentagon” in long-term memory
before starting our experiment. The procedure used a serial recall
task, which allowed to study the incremental encoding of chunks.
The duration of the display of the memory items and the number of
memory items were two other manipulated factors we thought
would help us look into the incremental encoding of the chunks.

2.1. Participants

Sixty-seven students enrolled at the University of Franche-
Comté, M ¼ 22 years old ðsd ¼ 2:7Þ, volunteered to participate in
the experiment.

2.2. Stimuli

Our stimuli could vary according to three dimensions: shape,
size and color. A combination of two shapes, colors, and sizes
makes a set of eight different objects. There were eight different
values for the shape dimension and the color dimension (Fig. 1,
top panel). However, we restricted the size dimension to two val-
ues (large vs. small, or 280 � 280 pixels vs. 140 � 140 pixels).
Shape, size and color are typically used by category learning
researchers to build canonical stimulus sets because these dimen-
sions can be easily and clearly partitioned.

For a given sequence, the program randomly chose two out of
eight shapes and two out of eight colors (see Fig. 1, top panel), in
order to create a set of eight objects. For example, if the values
‘‘triangle”, ‘‘square”, ‘‘white”, and ‘‘black” were drawn, the program
generated 2� 2� 2 ¼ 8 stimuli by combining three features for
each stimulus (e.g., small white triangle, large white triangle, . . .,
large black square). These values allowed for 1568 possible sets
of eight objects, so that the probability of a participant coming
across two identical sets during the experiment would be very
low. The stimuli were presented against a gray background.

2.3. Categories

We selected different categories of objects, which were to be
displayed and recalled serially. An example is the sequence
h j M N, which can be represented by six individual exemplars
(i.e., large white square, large black square, small white square,
small black square, small white triangle, and small black triangle).
Following Feldman (2000), this sequence can be redescribed accu-
rately by a shorter logical rule provided that order does not matter
(‘squares or small’, using inclusive disjunction, or ‘not[large and
triangle]’ using conjunction, which by de Morgan’s law are equiv-
alent). Another example is the sequence j N h M (‘small black
square, small black triangle, small white square, small white trian-
gle’), which can be simplified by abstracting the feature common to



Fig. 1. Screen shots showing a sample of possible stimuli (top panel), a to-be-recalled patterned sequence of stimuli (middle panel), and an example of a response screen that
asked the participant to recognize the previous stimuli and to order them by clicking on a mouse (bottom panel).

3 This rule-based presentation order is a bit different from the one used by Mathy
nd Feldman (2009), in which the order of the objects within the clusters was
ndom. Because our task is serial, our choice here consisted of ordering the objects
gically within the clusters to encourage participants to connect the objects serially
sing the shortest description.
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the four objects: ‘‘small”. Hence, the information for this category
is even more compressible and does not require much mental
effort to be retained. The to-be-recalled categories of stimuli were
chosen on the basis of the exhaustive list of the 21 categories
shown in the Appendix.

2.4. Ordering of the categories in the sequences

Our measure of complexity only serves here to predict the
chunkability of the category set, not the memorization of the
sequence. Controlled presentation orders were thus used to manip-
ulate category compressibility. This second manipulation consisted
of ordering the objects according to three main types of orders pre-
viously developed in the categorization research: rule, similarity,
and dissimilarity.

In the Rule condition (Fig. 2), the objects were grouped by clus-
ters (sub-categories). The differences were minimal within the
clusters, but more marked between clusters (whenever clusters
could be found). A minimal degree of similarity between clusters
contributes to greater discrimination of the clusters into distin-
guishable units, thus favoring the discovery of a logical rule.
Fig. 2 shows the example of an organized sequence in the Rule con-
dition. The shortest rule for describing the set of objects is ‘‘square
or small”. In Fig. 2, the first cluster is made up of the large white
square (first item) and the large black square (second item), which
differ by only one feature. The small white square (third item) that
follows the large black square (second item) marks a separation
between the first and second clusters because the two contiguous
items differ by two features. In the Rule condition, such leap can
facilitate the identification of clusters and therefore might induce
the formation of chunks based on the clusters (see Fig. 2, bottom,
which shows two leaps as a function of time, one after the second
item and the other after the fourth item). In this condition, the par-
ticipants should have the best recall performance, particularly if
they attempt to form small groups of objects by compressing infor-
mation locally.3

In the Similarity condition (Fig. 2), a sequence was chosen to
favor a minimal overall (i.e., for the entire sequence) inter-
stimulus distance. The objects were then presented as a string fol-
lowing the principle that there was maximal similarity between
two successively presented objects. Fig. 2 shows an example of a
similarity order for the same category of objects. Notice that adopt-
ing a similarity-based grouping process for this sequence would
result in retaining a single long chunk of six items.

Finally, in the Dissimilarity condition (Fig. 2), the set of objects
was chosen so as to favor a maximal total inter-stimulus distance.
Each object presented minimal similarity with the preceding one.
This condition deliberately disorganizes the presentation to make
the associations between stimuli more difficult, and should hinder
the chunking process. Using a dissimilarity-based strategy would
a
ra
lo
u



Fig. 2. Example of three sequences from the category structure ‘‘square or small”, representing six items (top left cube). Note: The six items are replaced by black numbered
circles on each of the three cubes to simulate their sequencing. In each of the three cubes, the presentation order is indicated by the numbers from one to six and by the
arrows. The distance between two consecutive objects is described by the type of arrow: solid (one edge, or one feature difference), dashed (two edges), or dotted (three
edges). In the Rule condition, the objects are presented in three clusters, within which the solid arrows are parallel and go in the same direction. The regularity of the rule is
related to two factors: the separation of the clusters (dashed arrows) and the similarity between the objects in the same cluster (solid arrows), both of which facilitate the
formation of small groups. In the Similarity condition, the inter-stimulus distance is minimal. All the objects are linked to each other by solid arrows, which can potentially
make a unique chunk of six objects. In the Dissimilarity condition, the sequence is characterized by a maximal inter-stimulus distance. The three plots at the bottom show the
distances between the stimuli as a function of presentation time (1 s per item). For instance, the first plot shows two distance leaps in the Rule condition, which can facilitate
the identification of three chunks. The leaps are more numerous, larger, and less regular in the Dissimilarity condition, while there are no leaps at all in the Similarity
condition.

4 In fact, the most incompressible categories provided fewer possibilities for order
manipulation. For instance, the concept M (i.e., white [small triangle or large
square] or large black triangle, in the 7th cell in the left column of Fig. 5) was typical o
a complex concept for which different presentation orders could not be specified. The
reason is that the objects in every pair of stimuli have a single feature in common. In
this particular case, once a first object is chosen, there is no other choice than to pick a
second object that is two-features away from the first, and so on. As a result, the rule-
based/similarity-based/dissimilarity-based distinction is no longer relevant. How-
ever, because the chosen order cannot benefit from any simple logical rule, or any
simple similarity-based relationship, the order can be considered dissimilarity-like.
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result in retaining several separate small chunks of independent
items. Consequently, recall performance should be lower than in
the other two conditions. Fig. 2 shows an ordered sequence in
the dissimilarity condition using the same example as above.

The 21 categories of objects shown in Fig. 5 in the Appendix
were transformed into 51 sequences, according to these three pre-
sentation orders. The number 51 results from the fact that the
order of six categories could not be manipulated. This was the case
for four categories made up of one or two objects (once the first
object is drawn, only the second object remains), and for two cat-
egories, for which the distances are identical between any two
objects in a pair (this is the case for the category in the left column
of Fig. 5, in which FC (Feldman’s measure of complexity) ¼ 8 and
FC¼ 10Þ.4 These six categories were coded ‘‘order condition = None”.
f
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The Rule, Similarity and Dissimilarity conditions were applied to the
15 remaining categories. Each participant saw all 51 sequences
ð3� 15þ 6Þ.

2.5. Procedure

For each participant, the 51 sequences were presented in ran-
dom order to avoid ascending list length or complexity. We estab-
lished six possible rotations for each category structure that
corresponded to six possible ways to place the objects on the dia-
gram while keeping the same structure. One rotation (among the
six) was randomly drawn for each sequence presented so as to
multiply the possible combinations in dimensional terms (shapes,
sizes and colors). Thus, the participant never knew in advance
which dimension would be the most relevant for the categoriza-
tion process. For the experiment as a whole, 3417 sequences/trials
(51 � 67 participants) were presented.

Serial report was investigated using a procedure similar to that
used in the visual STM serial report task (Avons and Mason, 1999;
Smyth et al., 2005), except that the stimuli were mixed with dis-
tractors on the response screen. Depending on the sequence, one
to eight stimuli were displayed serially in the center of the screen
(see Fig. 1, middle panel) at intervals of one second (41 partici-
pants) or two seconds (26 participants) per stimulus, depending
on the condition.5 During the recall phase (see Fig. 1, bottom panel),
the original set of eight stimuli was displayed randomly on the
screen. The stimuli were underlined (using a white line) when the
user clicked on them. After the user validated his/her answer with
the space bar, a feedback screen indicated if the recall was correct
(i.e., both item memory and order memory had to be correct), and
then a screen with a GO window appeared and the user moved on
to the following sequence by pressing on the space bar. The experi-
ment lasted an average of 25 min.

3. Results

The analyses were conducted on correct (1) or incorrect (0)
serial-recall scores for each trial (a response was scored correct
when both the items and the positions were correctly recalled),
and for the average recall score across conditions (proportion cor-
rect). The data was first aggregated for a given variable, e.g., ‘pre-
sentation time’, in order to run a separate univariate ANOVA for
each dependent variable (e.g., the mean proportion correct for all
trials pooled).

3.1. Summary of the expected results

(1) Recall performance should depend on sequence length to
the extent that longer sequences require a representation with
more chunks. (2) A higher compressibility of information (i.e.,
lower FC within sequences of the same length) should result in bet-
ter recall because higher compressibility enables better recoding of
the entire set of items. (3) A greater degree of regularity in the pre-
sentation order (rule-based, followed by similarity-based, followed
by dissimilarity-based) should favor the compression of the
available regularities into newly formed chunks. (4) For the less
important factor, display duration, we expected better recall per-
formance for the longer duration.
5 The 1 s vs. 2 s duration was a between-subject factor. The one-second condition
tends to be the standard condition for measuring memory span, so we used this
condition with a large number of participants. However, we still wanted to modulate
the time allotted to chunking by extending the display duration (i.e., 2 s) with a
smaller group of participants, because display duration can affect memorization
strategies (Hockey, 1973). The two-second condition was run with only 26 partic-
ipants to make sure the participants in the more standard one-second condition had
sufficient time to parse the stimuli and achieve similar performance.
3.2. Proportion correct

Regarding the 2 s vs. 1 s conditions, a preliminary between-
subject analysis on proportion correct (averaged across trials)
showed that stimulus duration was significant
ðtð65Þ ¼ �2:5; p ¼ :014; g2 ¼ :09Þ, with respective means equal
to .33 ðsd ¼ :11Þ and .27 ðsd ¼ :08Þ. However, because recall was
only slightly higher in the 2 s condition, with a rather small size
effect, we chose not to keep the 1 s vs. 2 s factor as a moderator
in the subsequent analyses.

Fig. 3 shows the mean proportion of correct responses as a func-
tion of the length of the sequence presented, by the type of
presentation order. Overall, a nonlinear regression (using an s-
shaped sigmoid function of the form a� 1=ð1þ expð�b� xþ cÞÞ
of the mean points on this figure (along the x-axis) showed that
78% of the performance variance was explained by sequence length
ðR2 ¼ :78Þ. Regardless of order, the memory-span estimate at a
threshold of 50% correct responses was 3.5 objects. When the
length of the sequence increased from three to four objects, mean
performance dropped from .64 to .33. It also diminished by half
again as much between four and five items to recall (from .33 to
.14). This impressive drop resulted in performance at the
lower end of Cowan’s (2001) memory-span estimate of 3–5 items,
and is similar to other more specific estimates of 3–4
items (Broadbent, 1975; Chen and Cowan, 2009; Luck and Vogel,
1997).

However, a multiple linear regression analysis on mean propor-
tion correct showed that each of the three factors contributed signif-
icantly to the drop in performance. The percentages of variance
explainedwereas follows: sequence length ðbirYi ¼ 67%Þ, compress-
ibility/FC ðbirYi ¼ 9%,which includedeightuniquevalues, that is 1, 2,
3, 4, 5, 6, 8, 10), presentation order6 ðbirYi ¼ 12%Þ, and presentation
time ðbirYi ¼ 1%Þ, totaling 89%, Fð6;89Þ ¼ 110; p < :001; R2 ¼ :89.
Theeffectsof lengthandpresentationorderonperformanceareclearly
visible in Fig. 3,whereas the effect of compressibility is shown in Fig. 4.
RegardingtheeffectofFC,apartialcorrelationanalysisshowedthatata
constantsequencelength,compressibilityandcorrectproportionwere
negatively correlated ðr ¼ �:28; p < :001Þ. Indeed, the more complex
the sequence, the lower the performance (see Fig. 4, left). The ANOVA
withrepeatedmeasures,withFCasawithin-subject factorandpropor-
tion correct as the dependent variable yielded a significant effect of FC
for most sequence lengths: Fð2;132Þ ¼ 2:9; p ¼ :054; g2

p ¼ :04 for

two-object sequences; Fð2;132Þ ¼ 11:5; p < :001; g2
p ¼ :15 for three-

object sequences; Fð3;198Þ ¼ 45:6; p < :001; g2
p ¼ :41 for four-

object sequences; Fð2;132Þ ¼ 18:8; p < :001; g2
p ¼ :22 for five-object

sequences; and Fð2;132Þ ¼ 45:1; p < :001; g2
p ¼ :41 for six-object

sequences. Fig. 4 shows the linear trend that we obtained using data
collapsed across participants, complexity, and sequence length.

The proportions of correct recall for the Rule, Similarity, and
Dissimilarity orders were respectively, .35 (sd = .16), .25
(sd = .13), and .16 (sd = .09). The ANOVA with repeated measures
yielded a significant effect, Fð2;132Þ ¼ 80; p < :001; g2

p ¼ :55. We
also observed significant differences between the Rule and Similar-
ity conditions, tð66Þ ¼ 6:8; p < :001, and between the Similarity
and Dissimilarity conditions, tð66Þ ¼ 7:8; p < :001, even after Bon-
ferroni correction.

At lengths 3 and 4 (the conditions for which the four types of
orders applied), the reason for the lower score in the None order
is linked to the complexity of the heterogeneous categories, for
which FC = 8 and FC = 10. In these conditions, the proportions of
6 Because the use of dummy variables is more appropriate for representing
ultiple groups (Cohen & Cohen, 1983), the Rule, Similarity, Dissimilarity, and None
nditions were recoded using dummy variables.
m
co



Fig. 3. Proportion of correct sequences recalled as a function of the sequence length
(number of objects), for each presentation order. Note: The error bars show �1
standard error.
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correct recall for the Rule, Similarity, Dissimilarity, and None
orders were respectively, .52 (sd = .03), .47 (sd = .03), .32
(sd = .02), and .28 (sd = .04). The ANOVA with repeated measures
yielded a significant effect, Fð3;198Þ ¼ 25; p < :001; g2

p ¼ :28. We
also observed significant differences between the Rule and Similar-
ity conditions, tð66Þ ¼ 2:11; p ¼ :04, and between the Similarity
and Dissimilarity conditions, tð66Þ ¼ 6:7; p < :001, but the differ-
ence between the Dissimilarity and None conditions was not sig-
nificant. At lengths 3 and 4, the only pair left significant after
Bonferroni correction was Similarity-Dissimilarity.

Arepeated-measuresANOVAwasrunonpresentationorder(with
the rule-based, similarity, and dissimilarity levels) and FC
(with levels 1, 2, 3, 4, 5, 6, and 8; note that the value 10 could not
interact with presentation order, and also, the N/A value could not
be includedto testa linear trend).Feldman’scomplexitysignificantly
affected the mean proportion correct, Fð6;396Þ ¼ 76; p < :001;
g2
p ¼ :54, and we found a linear trend for this factor,

Fð1;66Þ ¼ 235; p < :001; g2
p ¼ :78.Wealso founda significant inter-

actionbetweenthetwofactors,Fð12;792Þ ¼ 8:5; p < :001; g2
p ¼ :11,

which tended to show that the Rule-order benefited the participants
morewhen FCwas low.
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Fig. 4. Proportion of correct sequences recalled as a function of Feldman’s Complexity
analysis shown in the right plot is based on the 3217 trials, to include the entire varian
3.3. Transitional error probabilities

Transitional error probabilities (Johnson, 1969a, 1969b) can
provide further evidence as to whether the participants actually
used the available chunks. Without such an analysis, there is no
clear evidence of what chunks were adopted during the task. Based
on the Johnson’s analyses, one can explore the relationship
between performance on two adjacent items when they can be
assumed to fall within the same chunk, rather than on opposite
sides of a chunk boundary. For instance, the sequence h j

could be chunked into h j and using a logical rule. This
sequence thus contains two potential within-chunk transitions
(e.g., h to j and to ) and a single between-chunk transition
(j to ). The prediction was that within-chunk transitions would
more often be made correctly than between-chunk transitions
would, under the assumption that participants use the available
chunks and store them under the same memory code.

For all adjacent items, a transition was scored correct when the
second element was recalled, provided the first item had been cor-
rectly recalled. A transition error was counted whenever the sec-
ond element was not recalled but the first item had been
correctly recalled. If the participant’s response was h j , the
analysis indicated that there was only one out of two correct
within-chunk transitions and that the single between-chunk tran-
sition was correctly made. A transition was not counted when the
first item of an adjacent pair was not recalled.

The results reported in Table 1 show that a greater proportion of
transitions were correctly made within chunks than between
chunks, and that this difference was particularly great for the rule-
based presentation order. Another expected result was that recall
decreased more for within-chunk pairs than for between-chunk
pairs across all orders. The reason is that rule- and similarity-based
orders are assumed to facilitate chunkencodingmore. Table 1 shows
this interaction between presentation order and the two types of
pairs. A repeated-measures ANOVA using order (rule-based,
similarity-based, dissimilarity-based) and type of pair (within-
chunk vs. between-chunk) as two within-subject factors confirmed
this interaction, Fð2;132Þ ¼ 7:2; p < :001; g2

p ¼ :10, as well as a

main effect of these two factors ðFð2;132Þ¼158; p<:001; g2
p ¼ :71,

and Fð1;66Þ¼326; p< :001; g2
p ¼ :83, respectively).

Note that the above analyses argue in favor of the idea that
chunk identification was rule-based. To better account for the
formation of chunks in the rule-based order and the similarity-
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Table 1
Average proportion (all participants pooled) of adjacent two-stimulus sequences
recalled, as a function of presentation order and pair type.

102 M. Chekaf et al. / Cognition 155 (2016) 96–107
based order, a more precise and neutral description of how chunks
might be incrementally encoded during the task is presented
below
Type of pair Rule-based Similarity-based Dissimilarity-based

Within-chunk .56 (.14) .45 (.13) .29 (.11)
Between-chunk .43 (.15) .35 (.13) .21 (.09)

Note: Parentheses indicate SDs.
3.4. Incremental encoding of chunks of varying lengths using strict
position scoring

We look at how much information participants may have
encoded irrespective of whether or not the response was perfectly
recalled. To evaluate the actual number of items encoded, we pre-
sent a microanalytical characterization of how chunks can be
encoded incrementally during the task. First, we identified the
chunks that could theoretically be formed by binding two or more
adjacent objects based on their similarity. This new analysis is
more neutral than the previous ones in that it does not favor the
rule-based process. We posited that the probability of forming a
chunk was maximal when two adjacent objects differed by only
one feature. Each study sequence was decomposed into chunks
when at least two adjacent objects were considered similar. A
chunk could, however, contain three objects if the third object also
differed by only one feature from the second object, and so on,
when more than three objects could be strung together. Put differ-
ently, a new chunk was formed whenever an object differed by at
least two features from the preceding object. A single-object chunk
was formed whenever there was no way of grouping two objects
together. Using this method, chunk size therefore ranged between
one object long and eight objects long.

For instance, the following study sequence h j N was
split as follows to form a new chunked sequence: h j – N –

, using three chunks of varying lengths (3, 2, 1, respectively) and
totaling six encoded objects. The ratio of six objects to three
chunks (i.e., two objects per chunk on average) indicates the com-
pression achieved by the recoding process.

To find the number of chunks that the participants encoded,
their response sequences were split using the same encoding
process before being aligned to the chunked study sequence. A
partial-credit scoring system was used to get the sum of the
chunks correctly recalled in their correct positions. For instance,
had the participant recalled h j N , this response sequence
was split into h j – N – before being aligned to the chunked
study sequencehj –N – . The alignment would only score
the first and third chunks as correctly recalled in their correct posi-
tions. The dissimilarity-order condition was removed from this
analysis because, by construction, it generally contained one-
object chunks. Across all sequence lengths, the theoretical average
of to-be-encoded chunks in the rule-based order was 2.9 vs. 1.5 in
the similarity-based order. Conversely, the number of objects that
could be unpacked from one chunk had a theoretical average that
was greater in the similarity-based condition (4.0) than in the rule-
based condition (1.7). By construction, the similarity-based condi-
tion favored longer chunks (and consequently fewer chunks),
whereas the rule-based condition rarely offered the opportunity
to form chunks made of more than two objects.

The results indicated a larger number of chunks encoded in the
rule-based order ðM ¼ 1:28; sd ¼ :42Þ than in the similarity-based
order ðM ¼ :45; sd ¼ :20Þ, after averaging the participants’ perfor-
mance across sequence lengths ðtð66Þ ¼ 20:2; p < :001;
g2
p ¼ :86Þ. The participants recalled an average of 2.27 objects in

the rule-based order versus 1.13 objects in the similarity-
based order, and this difference reached the same significance
level. The ratio between these two counts indicates that the partic-
ipants encoded an average of 2:27=1:28 ¼ 1:77 objects per chunk
in the rule-based order and 1:13=:45 ¼ 2:5 objects in the
similarity-based order. This difference was also significant after
averaging participants’ performance across sequence lengths
ðtð66Þ ¼ 13:7; p < :001; g2
p ¼ :74Þ. In comparison to the theoretical

number of objects that could be encoded in chunks in the rule-
based condition (1.7, as indicated above), the participants could
potentially encode these chunks perfectly (1.77 objects per chunk),
while retaining fewer chunks than available (1.28 instead of 2.9).
Information was therefore correctly encoded into in chunks but
the number of chunks was subject to a capacity limit.

3.5. Incremental encoding of chunks of varying lengths, regardless of
position

We used a less stringent free-position scoring system that
counted a chunk as correctly recalled no matter where it was in
the response sequence. We then determined the number of objects
that could beunpacked fromthe recalled chunks.Using thismethod,
thenumberof objectsunpacked fromthe chunks found in thepartic-
ipants’ responses was significantly greater in the rule-based condi-
tion ðM ¼ 2:99; sd ¼ :65Þ than it was when strict position scoring
was used ðM ¼ 2:27; sd ¼ :74Þ, tð66Þ ¼ 18:4; p < :001;g2

p ¼ :84,
and as such, a more plausible estimation of the expected 4� 1 span
was attained. Recall in the similarity-based condition was also
slightly greater, increasing from 1.13 to 1.34 ðtð66Þ ¼ 12:4;
p < :001;g2

p ¼ :70Þ.

3.6. Incremental encoding of chunks corresponding to pairs of items in
the similarity-based condition

We carried out a final test to see whether participants in the
similarity-basedconditionencodedsmaller chunks than thoseavail-
able, using an encoding process similar to the one induced in the
rule-based condition (i.e., encoding objects by pairs). For instance,
the sequencehj is potentially a single four-object chunksince
none of the transitions between adjacent objects involvesmore than
one feature. Because such a long chunk is probably more difficult to
encodethantwosmaller two-objectchunks,weseparatedthese long
chains by pairing the objects, as follows:hj and . Thismethod
was less strict for scoring participants’ performance. For instance,
based on thehj study sequence, ahj chunkwould be iden-
tified in h j (the participant’s response sequence), whereas no
chunk would be credited to the participant if h j was coded
as the only available chunk in the study sequence. In comparison
to the first method for identifying the chunks in the sequences, the
numberof objects recalled in the similarity condition increased from
1.13 to 2.07 using strict-position scoring ðtð66Þ¼24; p< :001;
g2
p ¼ :90Þ, and from 1.34 to 2.5 using free-position scoring

ðtð66Þ¼31:1; p< :001; g2
p ¼ :94Þ. This method could not, however,

affect the rule-basedconditionmuch,because,byconstruction,none
of the chunks could includemore than two objects in this condition.

Overall, the number of objects recalled was greater in the rule-
based condition, meaning that the participants were more inclined
to encode a greater number of smaller chunks than a smaller num-
ber of chunks made of a longer chain of similar objects (even
though the long chain could be split into several contiguous pairs).

To come back to the analysis of the transitional error probabil-
ities (now that we know that the analysis does no longer favors the
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identification of chunks that are rule-based), we again divided the
frequency of correct transitions by the total number of times that
the first item was correctly recalled for a given pair of adjacent
items. We then averaged the frequencies of the within-chunk
and between-chunk transitions across participants in order to
run a repeated-measures ANOVA using order (rule-based vs.
similarity-based) and type of pair (within-chunk vs. between-
chunk) as within-subject factors. This analysis showed that a
greater number of transitions were correctly made (in comparison
to Table 1) for the within-chunk transitions ðp ¼ :64Þ than for the
between-chunk transitions ðp ¼ :48Þ, Fð1;66Þ ¼ 245; p < :001;
g2
p ¼ :80, and that more transitions were correctly made in the

rule-based condition ðp ¼ :60Þ than in the similarity-based condi-
tion ðp ¼ :52Þ, Fð1;66Þ ¼ 31; p < :001; g2

p ¼ :32, with no interac-
tion between the two factors. Overall, there were 2178 correct
transitions versus 1260 transitional errors in the within-chunk
condition, but only 1432 correct transitions versus 1685 transi-
tional errors in the between-chunk condition, corresponding to
an odds ratio of 1.4.
4. Discussion

We explored the ability of untrained participants to increase
their immediate memory by parsing sequences of objects into
newly-formed chunks. The main reason for exploring chunk forma-
tion in immediate memory is that a chunk is too often thought of
solely as a product of an already-formed long-term representation.
Showing that recoding can occur very rapidly in immediate mem-
ory is a different undertaking. This idea may seemmerely intuitive,
but no other model can give a precise quantitative account of how
information is apprehended to determine exactly what patterns
can be extracted rapidly to increase memory capacity. Chunking
demands a more principled explanation than one simply saying
that individuals demonstrate chunking when they group items
together while performing a memory task. The chunking
memory-span task presented in this study provides a way to
explore the formation of a chunk in immediate memory, without
relying on chunking that has become familiar via repeated
exposure.

Our theory was that a compressibility metric could estimate the
opportunities available to participants for immediate recoding of
the to-be-recalled material. A first result showed a capacity of
about three objects for the most noncompressible sets of objects,
at a 50% threshold (see Fig. 3, which corresponds to the lower limit
of the 4� 1 estimate; Cowan (2001)). This result is consistent with
the literature (e.g., Broadbent, 1975; Chen and Cowan, 2009),
despite Cowan’s slightly higher estimate (2001). However, in line
with our prediction, this capacity limitation is overcome whenever
a form of relational information can be computed, that is, when
compressible sets of objects are used. The proportion of sequences
retained increased with compressibility, particularly when presen-
tation order facilitated the recoding of the sequences (up to about
four objects at a 50% threshold; see Fig. 3 for the rule-based order).
Overall, this finding showed a minimal span of about three objects
that increased monotonically as a function of sequence
compressibility.

More refined analyses showed that the objects were most often
chunked into pairs, in an incremental fashion. The results also
showed that recoding occurred more often in the rule-based order
(which favors short, well-clustered logical chunks of two objects)
than in the similarity-based order (which favors longer chunks of
very similar objects). The dissimilarity condition was less likely
to induce chunking because it tended to cluster the objects
individually. However, it is more difficult to tell exactly what a
chunk or rule is in immediate memory. More specifically, because
our method targets a process that occurs before any consolidation
process, there is no clear-cut empirical measure of the presence of
chunks or rules. Beyond that, however, by calculating the
transition-error probabilities and analyzing how chunks were
incrementally encoded, we do provide clues as to the nature of
the chunks formed.

Chunking in the present study probably emerged in immediate
memory thanks to the identification of elementary structures of
repetition in the input stream. This is why the present study goes
beyond those that have used digit sequences to study chunking
(Bor and Owen, 2007; Mathy and Feldman, 2012), insofar as regu-
lar digit sequences such as 123 may already have been represented
in the participants’ long-term memory (see Jones and Macken,
2015). Also, the chunking memory referred to in our tasks does
not correspond exactly to Potter’s (1993, 2012) notion of concep-
tual short-term memory. In her theory, short-term memory oper-
ates by allowing meaningful patterns stored in long-term
memory to be unconsciously identified in short-term memory.
Our results are closer to those of a previous study in which
untrained participants could improve memorization of a set of
spatially-grouped objects organized into smaller units by using
hierarchically nested levels (Feigenson and Halberda, 2008).

However, we have not lost sight of the fact that some individual
strategies devoted to describing the sequences can escape predic-
tions. For instance, we took the risk that some verbal processes
usually shown to be critical to short-term memorization (Burgess
and Hitch, 1999; Baddeley et al., 1975; Estes, 1973; Zhang and
Simon, 1985) are left uncontrolled in our study because the items
can be recoded verbally. Still, we intentionally let the participants
recode (verbally or otherwise) our visual-based material because
we thought that implementation of articulatory suppression could
also affect attention and subsequent encoding of regularities. It
was our goal to let the participants encode the objects freely.

The next sections evaluate competing theoretical accounts of
the compression effects we found. We will discuss in detail the
under estimated role of immediate memory in the formation of
chunks and why the compressibility of information is a good the-
ory to capture grouping effects. We begin with the idea that
although interference-based models can easily account for forget-
ting, they cannot account for the potential chunking processes at
play in our data. Indeed, the non-distinctiveness of the stimuli
can paradoxically be both detrimental to retaining similar items
(when it is considered to produce an interference-based forgetting
process) and beneficial to grouping (in our study, when it produces
a chunking process).

4.1. Interference-based models and local distinctiveness account

We believe that short-term memory models based on the stim-
ulus distinctiveness do not explain our presentation-order effects.
These models contend that similar items interfere with each other
(Lewandowsky et al., 2004; Nairne, 1990, 2002; Oberauer and
Kliegl, 2006). At best, these models predict no difference between
presentation orders, because the overall similarity of items is iden-
tical in our three orders. At worst, these models incorrectly predict
poorer performance in the similar condition than in the dissimilar
condition because of the possible negative effect of similarity
between adjacent items.

In contrast to both of these predictions, we correctly predicted
better performance in the similarity-based order than in the
dissimilarity-based order because the particular kind of similarity
we presented allowed for easier compression of the material based
on feature continuity between adjacent items. This result supports
a more general finding that similarity can be either beneficial or
detrimental to memory (Gupta et al., 2005; Hunt and McDaniel,
1993; Johnson et al., 2009; Lin and Luck, 2009; Nairne and
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Kelley, 1999). Moreover, we correctly predicted the best perfor-
mance when the materials lent themselves directly to explicit rules
of transition. The similarity condition did have longer potential
chains of similarity between contiguous items, but the basis of
the similarity kept shifting, so participants were generally unable
to use those contiguities as consistently as they could in the
rule-based condition. The logical content of our task might explain
why an associative process based on similarity occurred less often
in our data than a rule-based process did (Sloman, 1996).

For instance, the SIMPLE model (Brown et al., 2007) suggests
that the retrieval of items in memory is a discrimination process
at all periods of time (short-term and long-term). In SIMPLE, items
may be hard to retrieve when their temporal distance is short, for
the same reason that similar items are hard to identify. SIMPLE
usually captures the idea that items are more discriminable when
they occupy isolated locations on the temporal dimension. Here in
our study, it was adapted to capture the idea that items are more
discriminable when they are both physically and temporally iso-
lated. The following equation derived from context models
(Nosofsky, 1984, 1986) is simple enough to discriminate the effect
of our three presentation orders:
dij ¼
Xn

a¼1

j xia � xja j ð1Þ

The preceding equation can be used to evaluate both the phys-
ical distance and the temporal distance between two items in a
pair. For instance, let dij ¼ 2 when a is presented one second after
a (in this case, the total distance is: one feature + one second = 2
differences). The following exponential decay function can be used
to relate stimulus similarity to psychological distance (Nosofsky,
1986; Shepard, 1987):
gij ¼ e�dij ð2Þ
Finally, SIMPLE assumes that the discriminability Di of a mem-

ory trace is inversely proportional to its summed similarity to the n
memory traces:
Di ¼ 1Pn
j gij

ð3Þ

The probability of recalling item i in its correct temporal posi-
tion is simply its discriminability.

It appears that our results cannot be modelled by SIMPLE, in
which performance may be accounted for by an interference pro-
cess that would favor the dissimilarity-based order. Looking at
Fig. 2, our simulation showed that the overall discriminability
ðPDiÞ of the six items in the rule-based order was 3.90 (.69, .64,
.62, .62, .64, .69 for the respective six items respectively, summing
to 3.9), versus 3.27 for the similarity-based order and 4.79 for the
dissimilarity-based order, when only the items’ physical dimension
was taken into account. Adding the temporal dimension did not
change this ranking and we simply obtained larger overall discrim-
inability values: 5.09, 4.80, and 5.50, respectively. In this
interference-based model, the dissimilarity-based order is pre-
dicted to produce maximal local distinctiveness (hence better
recall), whereas the similarity-based order is predicted to produce
maximal interference in memory and subsequently a negative
effect on memorization. The rule-based model has an intermediate
status in the model, although our results clearly showed its supe-
riority. SIMPLE cannot account for how chunking operates in
immediate memory with the present data (even if the predictions
are reversed to consider similarity as beneficial, the rule-based
order still has an intermediate status).
4.2. Compressibility of information

In the present study, recall performance was significantly
enhanced for compressible sequences as compared to less com-
pressible ones. Brady et al. (2009) introduced statistical regulari-
ties in some sequences of visually presented stimuli in order to
study the effect of redundancy on memorization. The authors
reported that the observers recalled more information when the
stimuli exhibited regularities. They explained this advantage by
the fact that several items associated in memory formed a single
chunk, leaving more room in memory for storing other stimuli. A
compression process using statistical regularities (Brady et al.,
2009) can be perfectly modeled with a minimum description
length (MDL) type of approach (Rissanen, 1978). MDL is based on
an algorithmic notion of compressibility that seems more versatile
than Feldman’s (2000). However, the MDL approach seems to offer
no advantage for recoding a single short sequence such as the ones
used in the current study. A simple example is the difficulty apply-
ing MDL to a short sequence such as 12349876. In this case, its
recoding into a ¼ 1234 and b ¼ 9876 does not lead to any com-
pression (i.e., the length of the representation ‘‘a ¼ 1234 and
b ¼ 9876; ab” is greater than the original sequence, because the
redescription process needs to be taken into account), whereas it
can be clearly useful for a sequence that is slightly longer, such
as 123123123123123123123, for which we can use a shorter rep-
resentation a ¼ 123; aaaaaaa (the a ¼ 123 part corresponds to
what is written in the lookup table, and aaaaaaa corresponds to
the recoded sequence, but combined, it is shorter than the original
string). The same advantage for a ¼ 123 occurs if 123 is repeated
many times in the long-term mixed in with other sequences
(e.g., 123; 4; 123; 123; 5; 6; 2; 1; 123; 123; 123; etc:Þ. We con-
centrate here on a practical version of MDL. However, MDL is ide-
ally an algorithmic approach to compression that does not have to
rely on frequently repeated patterns, and as such, it is not impos-
sible that MDL could recode a small individual sequence like
12349876 based on a particular appropriate programming
language.

We agree with Brady et al.’s (2009) suggestion that chunking
can be used as an approximation of an algorithm of psychological
compression. However, our results go beyond that earlier work by
showing that a short amount of time is sufficient to allow a com-
pression process to occur on the fly. Our interpretation is that com-
pression can be efficient if it makes use of primitive repetition
structures, which can be detected and used rapidly in immediate
memory. As such, Feldman’s model of compressibility is more sui-
ted than MDL for capturing the recoding of single short sequences
like the ones in the current study. For instance, for the set h �,
compressibility is very limited and requires a more extensive
description in working memory than a more compressible set.
When almost no compression is possible, the representation
must contain almost as many features as in the original list of
objects.

A last point concerns the relationship between compressibility
and presentation order. When the members of a compressible set
(e.g., one where FC = 1, such as N M ) are unordered, their
memorization can be facilitated by using the rule ‘‘triangles”. How-
ever, the memorization of the ordered objects N M requires a
longer description than ‘‘triangles”. Therefore, a compressible cat-
egory that is not ordered in a regular way can be as difficult to
memorize as a noncompressible one. This is noticeable in Fig. 3
in which the mean data point for FC = 10 (this data point is repre-
sented by the black curve where length = 4) is very close to the
mean data point for the green dissimilarity curve. However, when
no compressibility is allowed in the first place, order does not mat-
ter anymore.



Fig. 5. Feldman’s (2000) minimization of Boolean complexity. Note: Column FC indicates Feldman’s (2000) measure of logical compressibility for each of the categories in the
left or right column.
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5. Conclusion

One common idea is that working memory simply uses pointers
to retrieve chunks in long-term memory, and that chunks are only
consolidated pieces of information stored in long-term memory.
We believe that we observed a chunking process that seems to
result from the temporary creation of new representations. Recall
performance in the current study was as small as about three
items, but the total increased when the sequential order of the
items was favorable to the formation of new chunks, i.e., compres-
sion of the sequence based on rules discovered within it. One
potential strong conclusion is that these variations in performance
mean that chunking processes can operate during short-term
memorization. It follows from this conclusion that chunks must
not be considered solely as permanent groupings of information
in long-term memory. It is possible that our participants
spontaneously compressed information without much mediation
of long-term memory chunks, since it is probable that none of
our participants had ever encountered the particular sequences
of objects seen in our experiment.

The experiment presented in this paper allows us to draw the
conclusion that information can be compressed in a few seconds
in immediate memory by capitalizing on the regularities within
the materials presented. Our research challenges us to consider
that the notion of compression in immediate memory is central
to defining grouping, chunking, and probably learning.
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Appendix A. Notes on Feldman’s (2000) compressibility metric

To use Feldman’s (2000) compressibilitymetric, the stimulimust
be split into categories. Categories (or simply groups of stimuli)
from 1 to 8 stimuli were drawn from the initial set of 8 stimuli.
The k chosen stimuli represented the class of to-be-recalled stimuli,
while the 8� k remaining objects represented the opposite class
that did not have to be recalled after stimulus presentation butwere
shown in the recall screen. Using all of the eight stimuli in the pro-
cedurewas thought to preserve the complexitymetric onwhich the
present study was based. Had the participants been only requested
to reconstruct the order of the chosen stimuli (e.g.,h followed byj)
without contrasting them to the opposite category, the participant
would only have to encode the color feature to succeed (e.g., using
a ‘‘white first” representation of the sequence). For instance, to fol-
low the metric that was first thought to account for categorization
processes, thehj sequence, needs to be contrasted to the opposite
class (i.e., M N ) by the participants. In this respect, the
minimal representation of the category is ‘‘small squares”, and the
right order (‘‘white first”) applies specifically to the ‘‘small squares”
category. The minimal representation (‘‘small squares”) that inter-
relates the individual stimuli is the compressibility of the category
because it is shorter than ‘‘small white square or small black
square”. The minimal representation that includes order informa-
tion is ‘‘small squares, white first”. Note that it is principally because
participants need to remember a sequence in the correct order that
the task goes beyond what a categorization task would require.

Fig. 5 gives Feldman’s (2000)measure of complexity (FC) for each
category,whichwas used as ameasure of compressibility. Thismea-
sure indicates the number of features in the shortest logical formula
allowing one to describe the stimuli, which are indicated by a black
dot. The black dots positioned on the cubes illustrate the relation-
ship between the objects that could be used by the participants to
associate the stimuli to be recalled in our experiment. Each of the
stimuli selected for a categorywerepresented sequentially and their
location remained constant in the middle of the screen, so no refer-
ence was made during the experiment to the spatial organization
shown in this figure (this was done here to bring out the similarity
structure between objects for the reader). For instance, the eighth
cell on the left indicates that four triangles were used to construct
thememory list (see bottom right cube above ‘Reference’ for retriev-
ing the stimuli to which the black dots in the eighth cell on the left
are pointing). The ‘‘triangle” category representationwould be suffi-
cient for free recall of the list.

FC is indicated in the middle column because the FC numbers
for a given line fit both the category structures on the left and those
on the right. Note that FC is not confounded with sequence length
for sequences equal to 2, 3, 4, 5, or 6 objects. However, for the cat-
egories made of 1, 7, or 8 objects, no variations in complexity could
be manipulated. When a set was composed of eight objects, cate-
gorization was no longer involved. In this particular case, the
shortest formula was trivial (‘‘all objects”) and it was associated
with a ‘Not Applicable’ (N/A) FC value.

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.cognition.2016.
05.024.
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